Soot Reduction in Cookstoves due to Turbulent Mixing

نویسنده

  • K. M. Lask
چکیده

Emissions from solid-fuel cookstoves, used by almost three billion people worldwide, create major issues for both human health and the environment. These emissions cause an estimated 4.3 million premature deaths annually and significantly contribute to environmental issues such as global climate change. One of the harmful emissions is soot and a promising option for reducing soot emissions from cookstoves is injecting air into the combustion chamber to increase turbulent mixing. Typically aerosol measurement systems are used to explore the effects of such modifications. However, these systems collect data relatively far away from the source, which makes it difficult to explore how the design modifications affect the actual flames. In this study, soot produced by a proxycookstove burner was measured in-situ using luminescence to explore the effects of different air injection modifications. The soot reduction trends were compared between different air injection angles and different air injection flow rates. Black carbon aerosol measurements were collected to compare with the values for in-situ soot and also to gain a quantitative value of black carbon produced in each case. It was found that overall trends appear to be consistent between the two measurement systems with all air injection modifications reducing black carbon over the baseline flame case and higher airflows proving to be more beneficial for soot reduction. Despite major differences in the amount of black carbon emitted from the flames recorded by the aerosol system, the luminosity intensity is similar for all cases, suggesting a significant increase in the soot oxidation with forced air flow. This indicates that the halo air injection systems are performing as desired, inducing turbulent mixing to reduce soot emissions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Dependence of Soot Formation and Combustion on Swirling Combustion Furnaces: Measurement and Simulation

Soot concentration distribution is investigated both numerically and experimentally in methane-air diffusion flame. The experimental work is conducted with a cylindrical swirl stabilized combustor. Filter paper technique is used to measure soot volume fraction inside the combustor. The numerical simulation is based on the solution of the fully-coupled conservation equations for swirling turbule...

متن کامل

Experimental study of soot aerosol formation in swirl-stabilized flames of alternative aviation fuels on a path to sustainable aviation

Particulate matter (soot aerosol or carbon black) emissions from combustion systems have adverse effects on human health and the environment. Soot is a major contributor to the total radiation heat loss in propulsion systems. Soot aerosols in the atmosphere have significant positive radiative forcing that contributes to global warming because of strong absorption of sunlight by soot. As compare...

متن کامل

Detailed Modelling of Soot Formation in a Partially Stirred Plug Flow Reactor

The purpose of this work is to propose a detailed model for the formation of soot in turbulent reacting flow and to use this model to study a carbon black furnace. The model is based on a combination of a detailed reaction mechanism to calculate the gas phase chemistry, a detailed kinetic soot model based on the method of moments, and the joint composition probability density function (PDF) of ...

متن کامل

Transient soot dynamics in turbulent nonpremixed ethylene–air counterflow flames

The dynamics of soot formation in turbulent ethylene–air nonpremixed counterflow flames is studied using direct numerical simulation (DNS) with a semi-empirical soot model and the discrete ordinate method (DOM) as a radiation solver. Transient characteristics of soot behavior are studies by a model problem of flame interaction with turbulence inflow at various intensities. The interaction betwe...

متن کامل

Studies on Soot Formation and Combustion in Turbulent Spray Flames: Modeling and Experimental Measurement

The present study is concerned with measuring and simulating soot formation and combustion in turbulent liquid fuel spray flames. Soot concentrations inside the combustor are measured by filter paper technique. The simulation is based on the solution of the fully-coupled conservation equations for turbulent flow, chemical species kinetic modeling, fuel droplet evaporation and combustion and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015